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The second-moment closure applied by Gibson & Launder (1978) to  buoyant 
turbulent flows is here employed without modification to compute the effects of 
Coriolis forces on fully-developed flow in a rotating channel. The augmentation of 
turbulent transport on the pressure surface of the channel and its damping on the 
suction surface seem to be well captured by the computations, provided the flow near 
the suction surface remains turbulent. The rather striking alteration in shape of the 
mean velocity profile that occurs as the Rossby number is increased from 0.06 to 0.2 
is shown to be explicable in terms of the modification to the intensity of the turbulent 
velocity fluctuations normal to the plate; for the larger value of Rossby number these 
fluctuations become larger than those in the flow direction causing what at low spin 
rates is a source of shear stress to become a sink. 

1. Introduction 
The fields of turbomachinery and electrical generators provide many examples of 

flows through rotating internal passages. At Reynolds numbers occurring in practice, 
the motion, in the great majority of cases, is turbulent. Within a turbine blade, for 
example, for a coolant passage of 1.5 mm diameter, a typical Reynolds number is 
5 x lo4. Coriolis forces associated with the rotation act both directly on the medsn 
motion and on the turbulent fluctuations. Their action on the mean flow is to induce 
a secondary motion while their effect on turbulence is to modify the mixing processes. 
Normally both effects will be present. Since secondary motions alter the turbulent 
stress field and modifications to the turbulence structure provide variations in the 
mean velocity profiles, the two effects become inextricably entwined. As a result, 
some of the early experimental studies have attributed to changes in turbulence 
structure flow developments that have more to do with the induced secondary 
motion. 

In  one case, however, the modification to the turbulence by Coriolis forces can be 
looked at in isolation: that of flow between infinite rotating parallel planes shown 
in figure 1, the mean Coriolis force in the direction normal to the planes being 
everywhere balanced by the pressure gradient. Measurements in rotating rectangular 
ducts of various aspect ratios by Launder (1965) and Moore (1967) established that, 
for practical purposes, the 'mfinite-parallel-planes limit was reached for an aspect 
ratio of about 7 : 1, a configuration adopted in several later experiments. The strength 
of Coriolis influences is usually expressed in terms of the Rossby number which for 
flow in a plane channel may be taken as sdD/V where U is the bulk mean velocity 
through the channel, D is the distance between the principal walls and sd is the 
rotation rate (figure 1). The study of Johnston, Halleen & Lezius (1972) provided 
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FIQTJRE 1. Flow configuration. 

mewurements over a range of Rossby numbers up to 0.21. Their photographic records 
of the turbulence structure indicate that on the destabilized high-pressure face of the 
channel, turbulent eddies aggregated into large-scale Gortler-type vortices for 
Rossby numbers greater than 0.15 while, at the low Reynolds numbers of their 
experiments, turbulent mixing was virtually annihilated on the low -pressure face. 
Even for Rossby numbers ag low as 0.01 measurements of mean velocity and wall 
friction (Launder 1965; Moore 1967; Johnston et al. 1972) still indicate a significant 
alteration in the turbulence structure. While Koyama & Ohuchi (1985) report 
streamwise turbulence intensities in developing flow in rotating passages, no ex- 
perimental data of the turbulent velocity field appear to have been reported for 
fully-developed rotating channel flow. Kim (1983), however, has performed a 
large-eddy simulation for a moderate Rossby number (0.068) which provides an 
indication of how rotation modifies the directional turbulence intensities. Very 
recently Miyake & Kajishima (1986) have reported large-eddy simulations up to 
Rossby numbers of 0.2. While the rather coarse grid employed may limit the value 
of these results as a formal database, they show interesting developments in the 
partitioning of the normal stresses. At the highest Rossby numbers, over a not 
inconsiderable region of their channel, the turbulence intensity normal to the wall 
was larger than the corresponding streamwise fluctuations, quite the reverse of that 
found in a stationary channel. 

Because flows in rotating passages arise in expensive, high-technology equipment, 
there is considerable interest in being able to calculate their development reliably. 
Eddy viscosity models of turbulent transport developed for non-rotating systems do 
not extrapolate well to rotating conditions. In  such schemes changes in effective 
transport coefficients are closely linked with changes in the turbulent kinetic 
energy - yet, there is no direct effect of rotation on the turbulence energy budget. 
Workers adopting this approach have usually tried to account for Coriolis influences 
on the turbulence by modifying the turbulent lengthscale or, equivalently, adding 
rotation-dependent terms to a closed-form transport equation for E ,  the turbulence- 
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energy dissipation rate. The work of Howard, Patankar & Bordynuik (1980) provides 
a good example of this approach and references to earlier contributions of the same 
type. 

If one considers the dynamic equations for the individual normal stresses, 
rotational influences become plain: a term 4GX2 appears as a source (or sink, 
depending on the sign of UV) in the budget for the mean square streamwise turbulent 
velocity 2, while a sink (source) of the same magnitude appears in the corresponding 
equation for the velocity fluctuations normal to the wall 3. Now, turbulent 
momentum transport rates are far more sensitive to changes in fluctuations normal 
to the channel wall than to those in the mean flow direction since that is the direction 
of inhomogeneity in mean velocity. Thus, if 2 is damped, so too will be the rate of 
mean momentum transfer irrespective of any increase in the streamwise turbulence 
intensity. The above feature of rotating flows suggests that a second-moment closure 
should be a promising route to adopt, that is to say one based on a closed-form version 
of the transport equations for the turbulent stress components. While models of this 
type have been rather successful in accounting for the effects that streamline 
curvature and buoyancy have on turbulence, there probably remains a degree of 
scepticism as to whether such schemes will predict transport rates correctly when 
markedly different large-eddy structures are created. Pouagare & Lakshminarayana 
(1983) have in fact started from a second-moment closure to guide them in developing 
an eddy viscosity model with a diffusion coefficient dependent on rotation rate. While 
the trends of the data were captured, both the mathematical simplifications made 
and the non-negligible differences between computation and experiment left the 
question of extrapolation unresolved. The same remarks may be made of the full 
second-moment closure study of Masuda, Koyama & Ariga (1983) who employed the 
quasi-isotropic pressur+strain model (Launder, Reece & Rodi 1975), that is 
applicable only to free shear flows. The decisive effect of a rigid boundary on pressure 
fluctuations, particularly in the presence of force fields, may be inferred from the quite 
different effects of gravitational forces on the turbulence structure in free shear flows 
and in the near-ground region of the earth’s boundary layer, Gibson & Launder 
(1978). 

The aim of the present study has thus been to test directly whether a full 
second-moment closure developed for non-rotating simple wall flows does or does not 
reproduce the trends of the available experimental data with at least sufficient fidelity 
for engineering computations. 

2. The physical and mathematical model 
The mean momentum equation describing the fully developed uniform-property 

flow through a parallel-walled channel rotating at angular velocity B may be written : 

1dP*  d -  d2U 0 = -- uv-kv- 
P dx dY dy2 a 

Here x and y are respectively the flow direction and the direction normal to the planes 
in a Cartesian frame rotating about the z-axis with the same angular velocity as the 
channel. P* is the ‘reduced’ static pressure and dP*/dx is a constant whose 
magnitude determines the mass flow rate between the planes. Formally, therefore, 
the mean momentum equation is identical to that for the non-rotating case. Over 
the region of flow considered, the viscous diffusion term in (1) is of only minor 
significance and the equation thus imposes the constraint that the turbulent shear 
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stress UV varies (very nearly) linearly across the channel. Thus, paradoxically, the 
mean momentum equation fixes the Reynolds shear stress UV while the equation for 
uv can be regarded as the vehicle for determining the mean velocity profile, U(y). 

Of course, in second-moment closure the shear stress cannot be found independ- 
ently of the other Reynolds-stress components. Each is described by the following 
equation written for compactness in Cartesian tensor notation : 

- 

The quantities 4, and G,,, the stress generation associated with shear and rotation 
(like the very minor contribution from viscous diffusion, di,) need no approximation 
comprising only Reynolds-stress components and mean field quantities. 

Since G k k  vanishes, there is no direct turbulence energy created by the rotation. 
If we take 52, as ( O , O , Q ) ,  the positive y- (x,)-direction points in the direction that 
the duct is moving (figure 1). Thus, for a mean flow that is radially outward, aU/ay 
- is positive (and hence UV negative) near the pressure face. The rotational term in the 
v2 equation, - 4QW, is thus positive, producing enhanced turbulent transport as 
discussed in $1. The same rotational term with opposite sign appears in the 2 
equation, while in the shear-stress equation the rotational term is - 2 Q ( 2 -  v2). In 
the usual thin-shear-flow situation 2 exceeds 3, so on the pressure side of the channel 
where aU/ay is positive, the rotational and shear-generation terms are of the same 
sign while on the 'suction' side they oppose one another. 

Surrogate models have to be provided for the remaining processes in (2) before it 
can be used to determine the turbulent stress field. The turbulent stress diffusion 
process (at,) is approximated by the generalized-gradient-diffusion hypothesis of Daly 
& Harlow (1970) while local isotropy is assumed for the dissipative correlations (q,). 
Thus : 

- 

et, = 9t*% (4) 

where k and e are the turbulent kinetic energy and its dissipation rate. 

Launder (1978). The term is made up of contributions as follows : 
The model for the pressure-strain process is broadly taken over from Gibson & 

@*, = @$,I + @t,2 + @*,3 + @t,w 



Second-moment closure study of rotating channel $ow 67 

the separate elements being associated respectively with purely turbulence interac- 
tions, mean strain, rotation and, finally, pressure reflections from the wall. Rotta’s 
(1951) linear return-to-isotropy model is retained for the first of these: 

while the analogous isotropization-of-production (IP) model is used for both the 
mean-strain and rotational parts of Gij. Thus, for the mean-strain part: 

‘ t j 2  = - C 2 ( P t j - i 4 j P k k ) *  (6) 

A little care is needed in extrapolating this - idea to the case of rotating flow, 
essentially because the substantial derivative Du, u,/Dt is not, as it  stands, materially 
invariant. A frame-indifferent convective derivative may, however, be obtained in 
several ways. Two that suffice for present purposes are either to add 8, to each side 
of (2) (Eringen 1962): 

DUU 
Qij G*+P,=2p,3+Gij . . . ,  

or to assign half the rotation ‘generation’ to the convection term (Takhar & Thomas 
1985) : 

Either approach suggests that in applying the isotropization-of-production idea to 
rotating systems the effective generation associated with rotation is only half as great 
relative to shear generation as indicated by (2). (The same conclusion is reached from 
considering the Poisson equation for fluctuating pressure, e.g. Cousteix & Aupoix 
1981 ; Bertoglio 1982. The former reference obtained the rotating-flow version of the 
‘ quasi-isotropic ’ model of #,,2, a representation which, while emerging from formal 
analysis, is less successful in practice than the simpler, intuitive IP model used here). 
One must of course adopt the same coefficient in the mean-strain and rotational parts 
of Gu,t so we infer that 

@#j2 + @ i j 3  = - +ptj-%j ‘kk), (7) 

since Gkk = 0. The value 0.6 is retained for c2 since this satisfies Crowe’s (1968) exact 
result : 

in the limit of isotropic turbulence. 

from the walls of the channel are modelled as: 
Finally, following Shir (1973) and Gibson & Launder (1978), pressure reflections 

t Otherwise, in computing a flow like an axisymmetric swirling jet, the computed behaviour 
would differ according to the rate of rotation of the axes. 
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C 1  C 2  C l W  c2w c, C€1 C€2 C€ 

1.8 0.6 0.5 0.3 0.22 1.45 1.90 0.18 

TABLE 1. Values of empirical coefficients 

where n denotes the vector normal to the wall. As in most earlier studies the wall 
proximity function f is interpreted as the summation of effects from both walls of 
the channel: 

the constant coefficient being chosen so thatfequals unity in the vicinity of the wall. 
The energy dissipation rate, E ,  appearing in various terms above is obtained from 

its own transport equation : 

E2 k ax, a E lax, 
DE E _-  Dt - ceq-~P,,-ca2-+ce- -u u - . 

Equation (10) is again a widely employed form that has been in use for some fifteen 
years (Hanjalid t Launder 1972). The standard values of the empirical coefficients 
adopted for the calculations are listed in table 1 ; in no case have they been tuned 
to secure better agreement with experiment. 

The numerical computations have been made with an adapted version of PASSABLE 
(Leschziner 1982), a general-purpose finite-volume solver for strings of coupled 
two-dimensional parabolic differential equations. As only the fully-developed 
solution was under consideration, however, the streamwise convection terms were 
dropped and, in place of forward-marching, in-step iterations were made until the 
difference equations were accurately satisfied. 

The model for the Reynolds stresses described in the preceding paragraphs is not 
applicable to the semi-viscous sublayers immediately adjacent to the walls. Boundary 
conditions on both sides of the channel are therefore applied far enough from the 
surface for the near-wall node to lie in the fully turbulent region. There the relation 
between the near-wall velocity and local shear stress is fixed from the usual 
logarithmic law : 

where U, is the friction velocity at the wall in question, y+ is the distance from the 
nearby wall multiplied by U,/v and constants K and c take the value 0.41 and 5.0 
recommended by Coles (1956). The dimensionless stress ratios at the near-wall nodes 
were fixed by assuming a constant stress layer while E was obtained from a quadratic 
equation that results from assuming a dependence inversely proportional to wall 
distance. 

In  addition to the near-wall boundary points, 47 interior nodes were employed in 
the solutions, somewhat concentrated towards the walls where gradients of the 
dependent values (in particular of E and U )  are steepest. 
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3. Presentation and discussion of the results 
Figure 2 compares the computed mean velocity distribution between the planes 

with the experimental data of Johnston et al. (1972) for two values of Rossby number, 
Ro (= aD/v) and two Reynolds numbers, Re (= n D / v ) ,  n being the bulk mean 
velocity. In  comparison with non-rotating channel flow, the profile on the unstable 
side initially steepens near the wall but exhibits a more uniform level further from 
the wall than for zero rotation. There are less pronounced changes on the stable side 
of the channel, though the maximum velocity position shifts to the stable side of the 
geometric symmetry plane. An increasingly asymmetric appearance develops as the 

FIQUBE 2 (a, b) .  For caption we facing page. 
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FIGURE 2. Mean velocity distribution across the channel. Symbols, experiment Johnston etd. 
(1972); line, present computations. (a)  Re = 11 500, Ro = 0.068. (a) Re = 35000, Ro = 0.068. 
(c)  Re = 11500, Ro = 0.21. 

rotation rate increases. The rather flatter measured profile in the central region for 
Re = 35000 may (as Johnston et al. suggest) be partly due to their flow not having 
reached full development. Kim’s large-eddy simulation produces a profile shape closer 
to the present computations than the experimental data. At the higher rotation 
number, 0.21, there is a rather different velocity variation over the ‘unstable’ side 
of the velocity maximum, the region of steep slope near the wall giving way to a gentle 
linear increase in velocity but with a slope greater than at lower Rossby numbers. 
The reason for this different shape of velocity distribution will emerge later when the 
turbulence intensity profiles are discussed. Overall, the departures of the mean 
velocity profiles from symmetry are reasonably well captured by the computations. 
(It is worth underlining that an eddy-viscosity model developed for non-rotating 
flows would exhibit complete symmetry at all rotational speeds.) 

When the velocity distribution is viewed in wall coordinates, figure 3, it  is evident 
that on the stable side of the channel the ‘wake ’ component of the profile is enhanced 
while on the unstable side it is completely eliminated. The two computational results 
on this figure were made for the dynamic conditions of Kim’s (1983) large-eddy 
simulation and for conditions intermediate between two of the tests of Johnston et al. 
(1972). There is generally satisfactorily close agreement among the experimental 
data, Kim’s results and the present second-moment computations. 

As the Rossby number is raised, the computed position of zero shear stress also 
shifts towards the suction surface, only rather more quickly than the peak velocity 
location. Thus, just as in flow through a channel with one smooth and one rough wall, 
the position of zero shear stress is located nearer than the point of maximum velocity 
to the wall with the lower shear stress. The experiments of Johnston et al. (1972) are 
qualitatively in accord with this result, though accurate experimental values are hard 
to determine as the velocity profile is so flat in the vicinity of its maximum. 



Second-mment closure study of rotating channel $ow 

26 

24 

22 

20 

18 

16 

14 

12 

71 

L 

- 

- 

- 

- 
- 

- 

- 

- 

U’ 

22 

20 

u+ 18 

16 

14 

12 

10 

8 -  

6 -  

.-. (4 - 

- 

- 

- 

- m 

- 

f 

10 
1 2 3 4 5 6 7 8 9 1  2 3 4 5 6 1 8 9 1  

( x  101) ( x  108) Y+ 

1 2 3 4 5 6 7 8 9 1  2 3 4 5 6 7 8 9 1  

( x  10’) ( x  108) Y+ 

FIQURE 3. Mean velocity profile in wall-law coordinates. (a) Stable side of the channel. (b )  Unstable 
side of the channel. Experiments by Johnston et d. (1972): A, Re = 34400, Ro = 0.083; 0, 
Re = 33300, Ro = 0.058. Large-eddy simulation by Kim (1983): *, Re = 24600, Ro = 0.068. 
Present computations: ---, Re = 24600, Ro = 0.068; ---, Re = 35000, Ro = 0.068; * - * * ,  

Re = 24600, Ro = 0. 

The r.m.8. turbulent velocities normal to the wall and in the stream direction are 
compared with those generated by Kim’s simulation in figure 4. (The fluctuations in 
the z-direction are almost unmodified by the rotation at this value of Ro and are 
therefore omitted for clarity.) The changes due to rotation are mainly in the directions 
one would infer from the sign of the Coriolis terms in the 2 and 3 equations. Near 
the unstable wall an augmentation of w’ ( = (3)i) occurs with a, reduction in u’ ; the 
reverse effects are seen on v‘ on the stable side, though u’ there is little affected by 
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FIGURE 4. Profiles of fluctuating velocities normalized by mean friction velocity for non-rotating 
flow at the same Reynolds number. (a) Large-eddy simulation by Kim (1983): -, Re = 24600, 
RO = 0.068; ---, Re = 24600, Ro = 0. (a) Present computations: -, Re = 24600, Ro = 0.068; 
_ _ _  , Re = 24600, Ro = 0. 

rotation. Qualitatively the present computations reproduce all these features, though 
in the centre of the channel certain discrepancies are evident. Kim's computations 
indicate that in this region v' becomes as large as u', a result not reproduced by our 
calculations which, in any event, give a too strongly anisotropic stress in the centre 
of the channel even for zero rotation. This (not very important) defect is due to the 
wall damping functionf not decreasing rapidly enough with wall distance.? Bardina, 
Feniger & Reynolds (1983 ; see also Bardina, Ferziger & Reynolds 1985) have pointed 
out that the dissipation-rate transport equation needs to be made sensitive to 
rotation if the decay of turbulence behind a rotating grid is to be correctly reproduced. 
In  a flow without shear, rotation impedes spectral transfer of energy leading to higher 
energy levels than would otherwise be expected. We notice that Kim's large-eddy 
simulation does show higher levels of u' and v' compared with the stationary case 
in the central region of the channel where shear generation is negligible ; the present 
computations do not, however, a result consistent with the findings of grid- 

t Naot & Rodi (1982) have adopted a decay proportional to (d/q)* to increase the fall-off rate. 
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FIGURE 5. Computed turbulence intensity profiles for Ro = 0.21. 

turbulence.? This weakness is of little significance in the present flow since its main 
characteristics are set by the regions closer to the wall where the predominant stress 
generation occurs. 

Although experimental data are not available for comparison, it is of interest to 
note in figure 5 that for a Rossby number of 0.2 1 the augmentation of 3 and damping 
of 2 on the unstable side results in v’ becoming greater than u’ in the range 
0.16 < y / D  < 0.65 (a result that qualitatively accords with the large-eddy simulation 
of Miyake & Kajishima - 1986). Now, since G is negative in this region of the channel, 
the term - 2 ( 2 - v 2 ) Q  in the u2, equation now acts as a sink and this in turn acts 
to increase aU/ay in this region. A steepening in velocity gradient is indeed the 
development observed in figure 2 at the highest Rossby number. 

Finally, the effect of rotation on the wall friction coefficient is examined. Figure 6, 
adapted from Johnston et al. (1972), shows the variation with Rossby number of the 
friction velocity on each of the walls normalized by the friction velocity for zero 
rotation at the same Reynolds number. Even Rossby numbers of order produce 
measurable differences in friction factor between the stable and unstable surfaces. 
On the unstable surface the augmentation appears to ‘saturate’ for Ro x 0.07 with 
U, some 10 % higher than for the non-rotating case. The reason for the saturation 
is presumably that as 7 amplifies, the Coriolis source in the EZ equation is reduced 
(and, as discussed in the previous paragraph, eventually - -  changes sign). In  contrast, 
on the stable side 2 is diminished thereby increasing (u2-vB), so the sink in the u2, 
equation increases monotonically with Rossby number. There is consequently no 
tendency for U,/U,, to reach an asymptotic value. The variations shown by the 
experimental results are mimicked by the present computations within the probable 
uncertainty of the data provided that the shear flow remains turbulent on both walls. 

t Bardina et al. propose the inclusion of a rotational source in the E equation, -0.1552s, to mimic 
the experimental decay. In the present study the term was included for a single run at Ro = 0.165. 
The results generated were not significantly different from those with the standard E equation. 
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FIQURE 6. Effects of rotation on wall friction, 00, experimental data collected by Johnston et al. 
(1972); A, large-eddy simulation by Kim (1983); 0,low-Reynolds-number data by Johnston et a2. 
(1972); -, present predictions Re = 35000. 

Experiments of Johnston et al. (1972) conducted at a Reynolds number of about lo4 
indicate that for Rossby numbers greater than about 0.1 the flow near the stable wall 
becomes laminar leading to a marked reduction in the level of friction factor there. 
This development is one that the calculations can obviously not reproduce since the 
wall boundary condition assumes a fully-turbulent layer in local equilibrium at the 
near-wall node. 

4. Concluding remark 
Our impression is that the second-moment closure in this study does capture the 

main effects of rotation on the turbulence structure. In  particular, the fact that the 
further augmentation of shear stress at the unstable wall ceases beyond a Rossby 
number of about 0.07 is correctly accounted for. Moreover, the differing behaviour 
near the two walls has been traced to the fact that near the unstable wall the Coriolis 
source produces changes in 2 and 2 which progressively reduce the magnitude of 
the corresponding source in the UV equation. The findings help support the view that 
the appearance of strikingly different large-scale structures in a shear flow does not 
necessarily signal a need to modify the turbulence model - at least if closure is made 
at second-moment level. 

The work has been undertaken within a programme of research sponsored by 
Rolls-Royce plc. Authors' names appear alphabetically. 
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